The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 181 –
200 of
294
A vertex k-ranking of a simple graph is a coloring of its vertices with k colors in such a way that each path connecting two vertices of the same color contains a vertex with a bigger color. Consider the minimum vertex ranking spanning tree (MVRST) problem where the goal is to find a spanning tree of a given graph G which has a vertex ranking using the minimal number of colors over vertex rankings of all spanning trees of G. K. Miyata et al. proved in [NP-hardness proof and an approximation algorithm...
A three-valued function defined on the vertices of a graph is a minus total dominating function (MTDF) if the sum of its function values over any open neighborhood is at least one. That is, for every , , where consists of every vertex adjacent to . The weight of an MTDF is , over all vertices . The minus total domination number of a graph , denoted , equals the minimum weight of an MTDF of . In this paper, we discuss some properties of minus total domination on a graph and obtain...
A celebrated result of Bringmann and Ono shows that the combinatorial rank generating function exhibits automorphic properties after being completed by the addition of a non-holomorphic integral. Since then, automorphic properties of various related combinatorial families have been studied. Here, extending work of Andrews and Bringmann, we study general infinite families of combinatorial q-series pertaining to k-marked Durfee symbols, in which we allow additional singularities. We show that these...
Currently displaying 181 –
200 of
294