The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 181 –
200 of
1227
We give an alternative proof of W. T. Gowers' theorem on block bases by reducing it to a discrete analogue on specific countable nets. We also give a Ramsey type result on k-tuples of block sequences in a normed linear space with a Schauder basis.
We propose a new linkage learning genetic algorithm called the Factor Graph based Genetic Algorithm (FGGA). In the FGGA, a factor graph is used to encode the underlying dependencies between variables of the problem. In order to learn the factor graph from a population of potential solutions, a symmetric non-negative matrix factorization is employed to factorize the matrix of pair-wise dependencies. To show the performance of the FGGA, encouraging experimental results on different separable problems...
Using the Kramer-Mesner method, - designs with as a group of automorphisms and with in the set are constructed. The search uses specific partitioning of columns of the orbit incidence matrix, related to so-called “quasi-designs”. Actions of groups , and twisted are being compared. It is shown that there exist - designs with , respectively twisted as a group of automorphisms and with in the set . With in the set , there exist designs which possess all three considered groups...
Let G be a graph on n vertices and let H be a given graph. We say that G is pancyclic, if it contains cycles of all lengths from 3 up to n, and that it is H-f1-heavy, if for every induced subgraph K of G isomorphic to H and every two vertices u, v ∈ V (K), dK(u, v) = 2 implies [...] mindG(u),dG(v)≥n+12 . In this paper we prove that every 2-connected K1,3, P5-f1-heavy graph is pancyclic. This result completes the answer to the problem of finding f1-heavy pairs of subgraphs implying pancyclicity...
On the background of Borůvka’s pioneering work we present a survey of the development related to the Minimum Spanning Tree Problem. We also complement the historical paper Graham-Hell [GH] by a few remarks and provide an update of the extensive literature devoted to this problem.
The perturbed Laplacian matrix of a graph is defined as , where is any diagonal matrix and is a weighted adjacency matrix of . We develop a Fiedler-like theory for this matrix, leading to results that are of the same type as those obtained with the algebraic connectivity of a graph. We show a monotonicity theorem for the harmonic eigenfunction corresponding to the second smallest eigenvalue of the perturbed Laplacian matrix over the points of articulation of a graph. Furthermore, we use...
Currently displaying 181 –
200 of
1227