Displaying 281 – 300 of 1336

Showing per page

On critical and cocritical radius edge-invariant graphs

Ondrej Vacek (2008)

Discussiones Mathematicae Graph Theory

The concepts of critical and cocritical radius edge-invariant graphs are introduced. We prove that every graph can be embedded as an induced subgraph of a critical or cocritical radius-edge-invariant graph. We show that every cocritical radius-edge-invariant graph of radius r ≥ 15 must have at least 3r+2 vertices.

On cyclically embeddable graphs

Mariusz Woźniak (1999)

Discussiones Mathematicae Graph Theory

An embedding of a simple graph G into its complement G̅ is a permutation σ on V(G) such that if an edge xy belongs to E(G), then σ(x)σ(y) does not belong to E(G). In this note we consider some families of embeddable graphs such that the corresponding permutation is cyclic.

On cyclically embeddable (n,n)-graphs

Agnieszka Görlich, Monika Pilśniak, Mariusz Woźniak (2003)

Discussiones Mathematicae Graph Theory

An embedding of a simple graph G into its complement G̅ is a permutation σ on V(G) such that if an edge xy belongs to E(G), then σ(x)σ(y) does not belong to E(G). In this note we consider the embeddable (n,n)-graphs. We prove that with few exceptions the corresponding permutation may be chosen as cyclic one.

On Decomposing Regular Graphs Into Isomorphic Double-Stars

Saad I. El-Zanati, Marie Ermete, James Hasty, Michael J. Plantholt, Shailesh Tipnis (2015)

Discussiones Mathematicae Graph Theory

A double-star is a tree with exactly two vertices of degree greater than 1. If T is a double-star where the two vertices of degree greater than one have degrees k1+1 and k2+1, then T is denoted by Sk1,k2 . In this note, we show that every double-star with n edges decomposes every 2n-regular graph. We also show that the double-star Sk,k−1 decomposes every 2k-regular graph that contains a perfect matching.

On degree sets and the minimum orders in bipartite graphs

Y. Manoussakis, H.P. Patil (2014)

Discussiones Mathematicae Graph Theory

For any simple graph G, let D(G) denote the degree set {degG(v) : v ∈ V (G)}. Let S be a finite, nonempty set of positive integers. In this paper, we first determine the families of graphs G which are unicyclic, bipartite satisfying D(G) = S, and further obtain the graphs of minimum orders in such families. More general, for a given pair (S, T) of finite, nonempty sets of positive integers of the same cardinality, it is shown that there exists a bipartite graph B(X, Y ) such that D(X) = S, D(Y )...

Currently displaying 281 – 300 of 1336