A note on the component structure in random intersection graphs with tunable clustering.
The cubical dimension of a graph is the smallest dimension of a hypercube into which is embeddable as a subgraph. The conjecture of Havel (1984) claims that the cubical dimension of every balanced binary tree with vertices, , is . The 2-rooted complete binary tree of depth is obtained from two copies of the complete binary tree of depth by adding an edge linking their respective roots. In this paper, we determine the cubical dimension of trees obtained by subdividing twice a 2-rooted...
The nth-order determinant of a Toeplitz-Hessenberg matrix is expressed as a sum over the integer partitions of n. Many combinatorial identities involving integer partitions and multinomial coefficients can be generated using this formula.
If is a simple graph of size without isolated vertices and is its complement, we show that the domination numbers of and satisfy where is the minimum degree of vertices in .
For a graph , a double Roman dominating function is a function having the property that if , then the vertex must have at least two neighbors assigned under or one neighbor with , and if , then the vertex must have at least one neighbor with . The weight of a double Roman dominating function is the sum . The minimum weight of a double Roman dominating function on is called the double Roman domination number of and is denoted by . In this paper, we establish a new upper bound...
In this note, we strengthen the inapproximation bound of O(logn) for the labeled perfect matching problem established in J. Monnot, The Labeled perfect matching in bipartite graphs, Information Processing Letters96 (2005) 81–88, using a self improving operation in some hard instances. It is interesting to note that this self improving operation does not work for all instances. Moreover, based on this approach we deduce that the problem does not admit constant approximation algorithms for connected...
The independent domination number (independent number ) is the minimum (maximum) cardinality among all maximal independent sets of . Haviland (1995) conjectured that any connected regular graph of order and degree satisfies . For , the subset graph is the bipartite graph whose vertices are the - and -subsets of an element ground set where two vertices are adjacent if and only if one subset is contained in the other. In this paper, we give a sharp upper bound for and prove that...
Let and be the domination number and the independent domination number of , respectively. Rad and Volkmann posted a conjecture that for any graph , where is its maximum degree (see N. J. Rad, L. Volkmann (2013)). In this work, we verify the conjecture for bipartite graphs. Several graph classes attaining the extremal bound and graphs containing odd cycles with the ratio larger than are provided as well.