The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 521 –
540 of
8549
The radio antipodal number of a graph is the smallest integer such that there exists an assignment satisfying for every two distinct vertices and of , where is the diameter of . In this note we determine the exact value of the antipodal number of the path, thus answering the conjecture given in [G. Chartrand, D. Erwin and P. Zhang, Math. Bohem. 127 (2002), 57–69]. We also show the connections between this colouring and radio labelings.
For any positive integer k and any set A of nonnegative integers, let denote the number of solutions (a₁,a₂) of the equation n = a₁ + ka₂ with a₁,a₂ ∈ A. Let k,l ≥ 2 be two distinct integers. We prove that there exists a set A ⊆ ℕ such that both and hold for all n ≥ n₀ if and only if log k/log l = a/b for some odd positive integers a,b, disproving a conjecture of Yang. We also show that for any set A ⊆ ℕ satisfying for all n ≥ n₀, we have as n → ∞.
We prove that a rank Dowling geometry of a group is partition representable if and only if is a Frobenius complement. This implies that Dowling group geometries are secret-sharing if and only if they are multilinearly representable.
A graph , with a group of automorphisms of , is said to be -transitive, for some , if is transitive on -arcs but not on -arcs. Let be a connected -transitive graph of prime valency , and the vertex stabilizer of a vertex . Suppose that is solvable. Weiss (1974) proved that . In this paper, we prove that for some positive integers and such that and .
Strongly perfect graphs were introduced by C. Berge and P. Duchet in [1]. In [4], [3] the following was studied: the problem of strong perfectness for the Cartesian product, the tensor product, the symmetrical difference of n, n ≥ 2, graphs and for the generalized Cartesian product of graphs. Co-strong perfectness was first studied by G. Ravindra andD. Basavayya [5]. In this paper we discuss strong perfectness and co-strong perfectness for the generalized composition (the lexicographic product)...
Currently displaying 521 –
540 of
8549