The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 721 –
740 of
849
Let G = (V,E) be a graph. Set D ⊆ V(G) is a total outer-connected dominating set of G if D is a total dominating set in G and G[V(G)-D] is connected. The total outer-connected domination number of G, denoted by , is the smallest cardinality of a total outer-connected dominating set of G. We show that if T is a tree of order n, then . Moreover, we constructively characterize the family of extremal trees T of order n achieving this lower bound.
A total vertex irregular k-labeling φ of a graph G is a labeling of the vertices and edges of G with labels from the set {1,2,...,k} in such a way that for any two different vertices x and y their weights wt(x) and wt(y) are distinct. Here, the weight of a vertex x in G is the sum of the label of x and the labels of all edges incident with the vertex x. The minimum k for which the graph G has a vertex irregular total k-labeling is called the total vertex irregularity strength of G. We have determined...
Dans cet article on étudie les propriétés d’ordres totaux à distance minimum d’un ensemble de tournois ; on montre, par exemple, que ces ordres contiennent l’ordre d’unanimité. On étudie la fonction maximum de la distance entre un ordre total et tournois définis sur un ensemble à éléments ; on donne sa valeur exacte pour pair, un encadrement pour impair, et sa valeur limite pour tendant vers l’infini.
We investigate which switching classes do not contain a bipartite graph. Our final aim is a characterization by means of a set of critically non-bipartite graphs: they do not have a bipartite switch, but every induced proper subgraph does. In addition to the odd cycles, we list a number of exceptional cases and prove that these are indeed critically non-bipartite. Finally, we give a number of structural results towards proving the fact that we have indeed found them all. The search for critically...
In [Mwambene E., Multiples of left loops and vertex-transitive graphs, Cent. Eur. J. Math. 3 (2005), no. 2, 254–250] it was proved that every vertex-transitive graph is the Cayley graph of a left loop with respect to a quasi-associative Cayley set. We use this result to show that Cayley graphs of left loops with respect to such sets have some properties in common with Cayley graphs of groups which can be used to study a geometric theory for left loops in analogy to that for groups.
Currently displaying 721 –
740 of
849