TOWARDS A SPECTRAL THEORY OF GRAPHS BASED ON THE SIGNLESS LAPLACIAN, I
In this work, Transition Probability Matrix (TPM) is proposed as a new method for extracting the features of nodes in the graph. The proposed method uses random walks to capture the connectivity structure of a node's close neighborhood. The information obtained from random walks is converted to anonymous walks to extract the topological features of nodes. In the embedding process of nodes, anonymous walks are used since they capture the topological similarities of connectivities better than random...
A graph is called -free if contains no induced subgraph isomorphic to any graph , . We define In this paper, we prove that (1) if is a connected -free graph of order and , then is traceable, (2) if is a 2-connected -free graph of order and for any two distinct pairs of non-adjacent vertices , of , then is traceable, i.e., has a Hamilton path, where is a graph obtained by joining a pair of non-adjacent vertices in a .
First, noncompact Cantor sets along with their defining trees are introduced as a natural generalization of -adic numbers. Secondly we construct a class of jump processes on a noncompact Cantor set from given pairs of eigenvalues and measures. At the same time, we have concrete expressions of the associated jump kernels and transition densities. Then we construct intrinsic metrics on noncompact Cantor set to obtain estimates of transition densities and jump kernels under some regularity conditions...
In a bidirected graph, an edge has a direction at each end, so bidirected graphs generalize directed graphs. We generalize the definitions of transitive closure and transitive reduction from directed graphs to bidirected graphs by introducing new notions of bipath and bicircuit that generalize directed paths and cycles. We show how transitive reduction is related to transitive closure and to the matroids of the signed graph corresponding to the bidirected graph.
In this paper we find a one-to-one correspondence between transitive relations and partial orders. On the basis of this correspondence we deduce the recurrence formula for enumeration of their numbers. We also determine the number of all transitive relations on an arbitrary -element set up to .