On the complete digraphs which are simply disconnected.
Homotopic methods are employed for the characterization of the complete digraphs which are the composition of non-trivial highly regular tournaments.
Homotopic methods are employed for the characterization of the complete digraphs which are the composition of non-trivial highly regular tournaments.
Let ₁,₂ be additive hereditary properties of graphs. A (₁,₂)-decomposition of a graph G is a partition of E(G) into sets E₁, E₂ such that induced subgraph has the property , i = 1,2. Let us define a property ₁⊕₂ by G: G has a (₁,₂)-decomposition. A property D is said to be decomposable if there exists nontrivial additive hereditary properties ₁, ₂ such that D = ₁⊕₂. In this paper we determine the completeness of some decomposable properties and we characterize the decomposable properties of completeness...
We show that the decision problem for p-reinforcement, p-total rein- forcement, total restrained reinforcement, and k-rainbow reinforcement are NP-hard for bipartite graphs.
Let D be a digraph with the vertex set V (D) and the arc set A(D). A subset N of V (D) is k-independent if for every pair of vertices u, v ∈ N, we have d(u, v), d(v, u) ≥ k; it is l-absorbent if for every u ∈ V (D) − N there exists v ∈ N such that d(u, v) ≤ l. A k-kernel of D is a k-independent and (k − 1)-absorbent subset of V (D). A 2-kernel is called a kernel. It is known that the problem of determining whether a digraph has a kernel (“the kernel problem”) is NP-complete, even in quite restricted...
Let be a finite group. The prime graph of is a graph whose vertex set is the set of prime divisors of and two distinct primes and are joined by an edge, whenever contains an element of order . The prime graph of is denoted by . It is proved that some finite groups are uniquely determined by their prime graph. In this paper, we show that if is a finite group such that , where , then has a unique nonabelian composition factor isomorphic to or .
We prove that for any additive hereditary property P > O, it is NP-hard to decide if a given graph G allows a vertex partition V(G) = A∪B such that G[A] ∈ 𝓞 (i.e., A is independent) and G[B] ∈ P.
In this note we show that -skeletons and -skeletons of -pseudomanifolds with full boundary are -connected graphs and -connected -complexes, respectively. This generalizes previous results due to Barnette and Woon.
We study the finite projective planes with linear programming models. We give a complete description of the convex hull of the finite projective planes of order 2. We give some integer linear programming models whose solution are, either a finite projective (or affine) plane of order n, or a (n+2)-arc.