An analytic formula for the Jack polynomials.
Let G = (V(G), E(G)) be a connected multigraph and let h(G) be the minimum integer k such that for every edge-colouring of G, using exactly k colours, there is at least one edge-cut of G all of whose edges receive different colours. In this note it is proved that if G has at least 2 vertices and has no bridges, then h(G) = |E(G)| -|V(G)| + 2.
The contribution deals with an application of the nonparametric version of Cox regression model to the analysis and modeling of the failure rate of technical devices. The objective is to recall the method of statistical analysis of such a model, to adapt it to the real–case study, and in such a way to demonstrate the flexibility of the Cox model. The goodness-of-fit of the model is tested, too, with the aid of the graphical test procedure based on generalized residuals.
Let be a non-empty subset of positive integers. A partition of a positive integer into is a finite nondecreasing sequence of positive integers in with repetitions allowed such that . Here we apply Pólya’s enumeration theorem to find the number of partitions of into , and the number of distinct partitions of into . We also present recursive formulas for computing and .
We introduce a 2-factor approximation algorithm for the minimum total covering number problem.