Displaying 901 – 920 of 1226

Showing per page

Amenable hyperbolic groups

Pierre-Emmanuel Caprace, Yves de Cornulier, Nicolas Monod, Romain Tessera (2015)

Journal of the European Mathematical Society

We give a complete characterization of the locally compact groups that are non elementary Gromov-hyperbolic and amenable. They coincide with the class of mapping tori of discrete or continuous one-parameter groups of compacting automorphisms. We moreover give a description of all Gromov-hyperbolic locally compact groups with a cocompact amenable subgroup: modulo a compact normal subgroup, these turn out to be either rank one simple Lie groups, or automorphism groups of semiregular trees acting doubly...

An algebraic characterization of geodetic graphs

Ladislav Nebeský (1998)

Czechoslovak Mathematical Journal

We say that a binary operation * is associated with a (finite undirected) graph G (without loops and multiple edges) if * is defined on V ( G ) and u v E ( G ) if and only if u v , u * v = v and v * u = u for any u , v V ( G ) . In the paper it is proved that a connected graph G is geodetic if and only if there exists a binary operation associated with G which fulfils a certain set of four axioms. (This characterization is obtained as an immediate consequence of a stronger result proved in the paper).

An algebraic theory of order

Philippe Chartier, Ander Murua (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we present an abstract framework which describes algebraically the derivation of order conditions independently of the nature of differential equations considered or the type of integrators used to solve them. Our structure includes a Hopf algebra of functions, whose properties are used to answer several questions of prime interest in numerical analysis. In particular, we show that, under some mild assumptions, there exist integrators of arbitrarily high orders for arbitrary (modified)...

An alternative construction of normal numbers

Edgardo Ugalde (2000)

Journal de théorie des nombres de Bordeaux

A new class of b -adic normal numbers is built recursively by using Eulerian paths in a sequence of de Bruijn digraphs. In this recursion, a path is constructed as an extension of the previous one, in such way that the b -adic block determined by the path contains the maximal number of different b -adic subblocks of consecutive lengths in the most compact arrangement. Any source of redundancy is avoided at every step. Our recursive construction is an alternative to the several well-known concatenative...

Currently displaying 901 – 920 of 1226