The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 1021 – 1040 of 1341

Showing per page

On the null space of a Colin de Verdière matrix

Lászlo Lovász, Alexander Schrijver (1999)

Annales de l'institut Fourier

Let G = ( V , E ) be a 3-connected planar graph, with V = { 1 , ... , n } . Let M = ( m i , j ) be a symmetric n × n matrix with exactly one negative eigenvalue (of multiplicity 1), such that for i , j with i j , if i and j are adjacent then m i , j < 0 and if i and j are nonadjacent then m i , j = 0 , and such that M has rank n - 3 . Then the null space ker M of M gives an embedding of G in S 2 as follows: let { a , b , c } be a basis of ker M , and for i V let ϕ ( i ) : = ( a i , b i , c i ) T ; then ϕ ( i ) 0 , and ψ ( i ) : = ϕ ( i ) / ϕ ( i ) embeds V in S 2 such that connecting, for any two adjacent vertices i , j , the points ψ ( i ) and ψ ( j ) by a shortest geodesic on S 2 , gives...

On the number of dissimilar pfaffian orientations of graphs

Marcelo H. de Carvalho, Cláudio L. Lucchesi, U. S.R. Murty (2010)

RAIRO - Theoretical Informatics and Applications

A subgraph H of a graph G is conformal if G - V(H) has a perfect matching. An orientation D of G is Pfaffian if, for every conformal even circuit C, the number of edges of C whose directions in D agree with any prescribed sense of orientation of C is odd. A graph is Pfaffian if it has a Pfaffian orientation. Not every graph is Pfaffian. However, if G has a Pfaffian orientation D, then the determinant of the adjacency matrix of D is the square of the number of perfect matchings of G. (See the book...

Currently displaying 1021 – 1040 of 1341