On the reconstruction of the matching polynomial and the reconstruction conjecture.
The zero forcing number and the positive zero forcing number of a graph are two graph parameters that arise from two types of graph colourings. The zero forcing number is an upper bound on the minimum number of induced paths in the graph that cover all the vertices of the graph, while the positive zero forcing number is an upper bound on the minimum number of induced trees in the graph needed to cover all the vertices in the graph. We show that for a block-cycle graph the zero forcing number equals...
È ben noto che fra le classi di sistemi ternari di Hall (HTS), gli HTS Abeliani ammettano una risoluzione siccome sono esattamente gli spazi affini finiti d'ordine 3; per questi sistemi una tal risoluzione è fornita dalla relazione di parallelismo. In questa nota viene dimostrato che certe classi di HTS non Abeliani costrutti dai gruppi di Burnside , anche ammettono una risoluzione. Allora, questi esempi di HTS si possono considerare anche come spazi finiti di Sperner e dunque la nota conclude...
The Tutte polynomial is a generalization of the chromatic polynomial of graph colorings. Here we present an extension called the rooted Tutte polynomial, which is defined on a graph where one or more vertices are colored with prescribed colors. We establish a number of results pertaining to the rooted Tutte polynomial, including a duality relation in the case that all roots reside around a single face of a planar graph.
Kragujevac (M. L. Kragujevac: On the Laplacian energy of a graph, Czech. Math. J. 56(131) (2006), 1207–1213) gave the definition of Laplacian energy of a graph and proved ; equality holds if and only if . In this paper we consider the relation between the Laplacian energy and the chromatic number of a graph and give an upper bound for the Laplacian energy on a connected graph.
Let G be a mixed graph. We discuss the relation between the second largest eigenvalue λ₂(G) and the second largest degree d₂(G), and present a sufficient condition for λ₂(G) ≥ d₂(G).
Let G be a graph. A function f : V (G) → {−1, 1} is a signed k- independence function if the sum of its function values over any closed neighborhood is at most k − 1, where k ≥ 2. The signed k-independence number of G is the maximum weight of a signed k-independence function of G. Similarly, the signed total k-independence number of G is the maximum weight of a signed total k-independence function of G. In this paper, we present new bounds on these two parameters which improve some existing bounds....