The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 21 –
40 of
397
The concept of -ideals in posets is introduced. Several properties of -ideals in -distributive posets are studied. Characterization of prime ideals to be -ideals in -distributive posets is obtained in terms of minimality of ideals. Further, it is proved that if a prime ideal of a -distributive poset is non-dense, then is an -ideal. Moreover, it is shown that the set of all -ideals of a poset with forms a complete lattice. A result analogous to separation theorem for finite -distributive...
The concept of -ideals is introduced in a pseudo-complemented distributive lattice and some properties of these ideals are studied. Stone lattices are characterized in terms of -ideals. A set of equivalent conditions is obtained to characterize a Boolean algebra in terms of -ideals. Finally, some properties of -ideals are studied with respect to homomorphisms and filter congruences.
We study the behaviour of ℵ-compactness, extent and Lindelöf number in lexicographic products of linearly ordered spaces. It is seen, in particular, that for the case that all spaces are bounded all these properties behave very well when taking lexicographic products. We also give characterizations of these notions for generalized ordered spaces.
In this paper, we generalize the notion of supremum and infimum in a poset.
In [1], Jakubík showed that the class of -interpolation lattice-ordered groups forms a radical class, but left open the question of whether the class forms a torsion class. In this paper, we show that this class does indeed form a torsion class.
For an algebraic structure or type and a set of open formulas of the first order language we introduce the concept of -closed subsets of . The set of all -closed subsets forms a complete lattice. Algebraic structures , of type are called -isomorphic if . Examples of such -closed subsets are e.g. subalgebras of an algebra, ideals of a ring, ideals of a lattice, convex subsets of an ordered or quasiordered set etc. We study -isomorphic algebraic structures in dependence on the...
We investigate σ-entangled linear orders and narrowness of Boolean algebras. We show existence of σ-entangled linear orders in many cardinals, and we build Boolean algebras with neither large chains nor large pies. We study the behavior of these notions in ultraproducts.
Currently displaying 21 –
40 of
397