Fortsetzungen extremaler Funktionale.
Four-part semigroups form a new class of semigroups which became important when sets of Boolean operations which are closed under the binary superposition operation f + g := f(g,...,g), were studied. In this paper we describe the lattice of all subsemigroups of an arbitrary four-part semigroup, determine regular and idempotent elements, regular and idempotent subsemigroups, homomorphic images, Green's relations, and prove a representation theorem for four-part semigroups.
Does there exist an atomic Archimedean lattice effect algebra with non-atomic subalgebra of sharp elements? An affirmative answer to this question is given.
“The kernel functor” from the category of archimedean lattice-ordered groups with distinguished weak unit onto LFrm, of Lindelöf completely regular frames, preserves and reflects monics. In , monics are one-to-one, but not necessarily so in LFrm. An embedding for which is one-to-one is termed kernel-injective, or KI; these are the topic of this paper. The situation is contrasted with kernel-surjective and -preserving (KS and KP). The -objects every embedding of which is KI are characterized;...
A lattice is said to satisfy (the lattice theoretic version of) Frankl’s conjecture if there is a join-irreducible element such that at most half of the elements of satisfy . Frankl’s conjecture, also called as union-closed sets conjecture, is well-known in combinatorics, and it is equivalent to the statement that every finite lattice satisfies Frankl’s conjecture. Let denote the number of nonzero join-irreducible elements of . It is well-known that consists of at most elements....
In this paper we have given the construction of free -groups generated by a po-group and the construction of free products in any sub-product class of -groups. We have proved that the -free products satisfy the weak subalgebra property.