Local semilattices on two generators.
For a Tychonoff space , is the lattice-ordered group (-group) of real-valued continuous functions on , and is the sub--group of bounded functions. A property that might have is (AP) whenever is a divisible sub--group of , containing the constant function 1, and separating points from closed sets in , then any function in can be approximated uniformly over by functions which are locally in . The vector lattice version of the Stone-Weierstrass Theorem is more-or-less equivalent...
In this paper, localic upper, respectively lower continuous chains over a locale are defined. A localic Katětov-Tong insertion theorem is given and proved in terms of a localic upper and lower continuous chain. Finally, the localic Urysohn lemma and the localic Tietze extension theorem are shown as applications of the localic insertion theorem.
Let , where is the union of all open subsets such that . In this paper, we present a pointfree topology version of , named . We observe that enjoys most of the important properties shared by and , where is the pointfree version of all continuous functions of with countable image. The interrelation between , , and is examined. We show that for any space . Frames for which are characterized.
Locally solid Riesz spaces have been widely investigated in the past several decades; but locally solid topological lattice-ordered groups seem to be largely unexplored. The paper is an attempt to initiate a relatively systematic study of locally solid topological lattice-ordered groups. We give both Roberts-Namioka-type characterization and Fremlin-type characterization of locally solid topological lattice-ordered groups. In particular, we show that a group topology on a lattice-ordered group is...
It is proved that for every continuous lattice there is a unique semiuniform structure generating both the order and the Lawson topology. The way below relation can be characterized with this uniform structure. These results are used to extend many of the analytical properties of real-valued l.s.cḟunctions to l.s.cḟunctions with values in a continuous lattice. The results of this paper have some applications in potential theory.
Under every uncountable almost disjoint family is either anti-Luzin or has an uncountable Luzin subfamily. This fails under CH. Related properties are also investigated.
We prove a Lyapunov type theorem for modular measures on lattice ordered effect algebras.