The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In the paper, we introduce the notion of annihilators in BL-algebras and investigate some related properties of them. We get that the ideal lattice (I(L), ⊆) is pseudo-complemented, and for any ideal I, its pseudo-complement is the annihilator I⊥ of I. Also, we define the An (L) to be the set of all annihilators of L, then we have that (An(L); ⋂,∧An(L),⊥,0, L) is a Boolean algebra. In addition, we introduce the annihilators of a nonempty subset X of L with respect to an ideal I and study some properties...
In this note we remark upon some relationships between the ideas of an approximation space and rough sets due to Pawlak ([9] and [10]) and algebras related to the study of algebraic logic - namely, cylindric algebras, relation algebras, and Stone algebras. The paper consists of three separate observations. The first deals with the family of approximation spaces induced by the indiscernability relation for different sets of attributes of an information system. In [3] the family of closure operators...
In this paper we obtain the forbidden configuration for 0-distributive lattices.
In the first section of this paper, we prove an analogue of Stone’s Theorem for posets satisfying DCC by using semiprime ideals. We also prove the existence of prime ideals in atomic posets in which atoms are dually distributive. Further, it is proved that every maximal non-dense (non-principal) ideal of a 0-distributive poset (meet-semilattice) is prime. The second section focuses on the characterizations of (minimal) prime ideals in pseudocomplemented posets. The third section deals with the generalization...
The concept of a relatively pseudocomplemented directoid was introduced recently by the first author. It was shown that the class of relatively pseudocomplemented directoids forms a variety whose axiom system contains seven identities. The aim of this paper is three-fold. First we show that these identities are not independent and their independent subset is presented. Second, we modify the adjointness property known for relatively pseudocomplemented semilattices in the way which is suitable for...
We show that every pseudocomplemented poset can be equivalently expressed as a certain algebra where the operation of pseudocomplementation can be characterized by means of remaining two operations which are binary and nullary. Similar characterization is presented for Stone posets.
Directoids as a generalization of semilattices were introduced by J. Ježek and R. Quackenbush in 1990. We modify the concept of a pseudocomplement for commutative directoids and study several basic properties: the Glivenko equivalence, the set of the so-called boolean elements and an axiomatization of these algebras.
We study a particular way of introducing pseudocomplementation in ordered semigroups with zero, and characterise the class of those pseudocomplemented semigroups, termed g-semigroups here, that admit a Glivenko type theorem (the pseudocomplements form a Boolean algebra). Some further results are obtained for g-semirings - those sum-ordered partially additive semirings whose multiplicative part is a g-semigroup. In particular, we introduce the notion of a partial Stone semiring and show that several...
Currently displaying 41 –
60 of
83