The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper we deal with the of an -algebra , where and are nonzero cardinals. It is proved that if is singular and -distributive, then it is . We show that if is complete then it can be represented as a direct product of -algebras which are homogeneous with respect to higher degrees of distributivity.
We give two variations of the Holland representation theorem for -groups and of its generalization of Glass for directed interpolation po-groups as groups of automorphisms of a linearly ordered set or of an antilattice, respectively. We show that every pseudo-effect algebra with some kind of the Riesz decomposition property as well as any pseudo -algebra can be represented as a pseudo-effect algebra or as a pseudo -algebra of automorphisms of some antilattice or of some linearly ordered set.
The variety of basic algebras is closed under formation of horizontal sums. We characterize when a given basic algebra is a horizontal sum of chains, MV-algebras or Boolean algebras.
Currently displaying 1 –
3 of
3