Displaying 61 – 80 of 126

Showing per page

Completely dissociative groupoids

Milton Braitt, David Hobby, Donald Silberger (2012)

Mathematica Bohemica

In a groupoid, consider arbitrarily parenthesized expressions on the k variables x 0 , x 1 , x k - 1 where each x i appears once and all variables appear in order of their indices. We call these expressions k -ary formal products, and denote the set containing all of them by F σ ( k ) . If u , v F σ ( k ) are distinct, the statement that u and v are equal for all values of x 0 , x 1 , x k - 1 is a generalized associative law. Among other results, we show that many small groupoids are completely dissociative, meaning that no generalized associative law holds...

Composition of axial functions of products of finite sets

Krzysztof Płotka (2007)

Colloquium Mathematicae

We show that every function f: A × B → A × B, where |A| ≤ 3 and |B| < ω, can be represented as a composition f₁ ∘ f₂ ∘ f₃ ∘ f₄ of four axial functions, where f₁ is a vertical function. We also prove that for every finite set A of cardinality at least 3, there exist a finite set B and a function f: A × B → A × B such that f ≠ f₁ ∘ f₂ ∘ f₃ ∘ f₄ for any axial functions f₁, f₂, f₃, f₄, whenever f₁ is a horizontal function.

Computing the greatest 𝐗 -eigenvector of a matrix in max-min algebra

Ján Plavka (2016)

Kybernetika

A vector x is said to be an eigenvector of a square max-min matrix A if A x = x . An eigenvector x of A is called the greatest 𝐗 -eigenvector of A if x 𝐗 = { x ; x ̲ x x ¯ } and y x for each eigenvector y 𝐗 . A max-min matrix A is called strongly 𝐗 -robust if the orbit x , A x , A 2 x , reaches the greatest 𝐗 -eigenvector with any starting vector of 𝐗 . We suggest an O ( n 3 ) algorithm for computing the greatest 𝐗 -eigenvector of A and study the strong 𝐗 -robustness. The necessary and sufficient conditions for strong 𝐗 -robustness are introduced and an efficient...

Currently displaying 61 – 80 of 126