The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 179

Showing per page

q -analogues of two supercongruences of Z.-W. Sun

Cheng-Yang Gu, Victor J. W. Guo (2020)

Czechoslovak Mathematical Journal

We give several different q -analogues of the following two congruences of Z.-W. Sun: k = 0 ( p r - 1 ) / 2 1 8 k 2 k k 2 p r ( mod p 2 ) and k = 0 ( p r - 1 ) / 2 1 16 k 2 k k 3 p r ( mod p 2 ) , where p is an odd prime, r is a positive integer, and ( m n ) is the Jacobi symbol. The proofs of them require the use of some curious q -series identities, two of which are related to Franklin’s involution on partitions into distinct parts. We also confirm a conjecture of the latter author and Zeng in 2012.

q-Stern Polynomials as Numerators of Continued Fractions

Toufik Mansour (2015)

Bulletin of the Polish Academy of Sciences. Mathematics

We present a q-analogue for the fact that the nth Stern polynomial Bₙ(t) in the sense of Klavžar, Milutinović and Petr [Adv. Appl. Math. 39 (2007)] is the numerator of a continued fraction of n terms. Moreover, we give a combinatorial interpretation for our q-analogue.

Quadratic Differentials and Equivariant Deformation Theory of Curves

Bernhard Köck, Aristides Kontogeorgis (2012)

Annales de l’institut Fourier

Given a finite p -group G acting on a smooth projective curve X over an algebraically closed field k of characteristic p , the dimension of the tangent space of the associated equivariant deformation functor is equal to the dimension of the space of coinvariants of G acting on the space V of global holomorphic quadratic differentials on X . We apply known results about the Galois module structure of Riemann-Roch spaces to compute this dimension when G is cyclic or when the action of G on X is weakly...

Currently displaying 1 – 20 of 179

Page 1 Next