The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 2281 – 2300 of 16591

Showing per page

Caractérisation d'un ensemble généralisant l'ensemble des nombres de Pisot

Toufik Zaïmi (1998)

Acta Arithmetica

1. Introduction. Soient K un corps de nombres et θ un entier algébrique de module > 1 et de polynôme minimal Irr(θ,K,z) sur K. Alors θ est dit K-nombre de Pisot si pour tout plongement σ de K dans ℂ le polynôme σIrr(θ,K,z) possède une unique racine de module > 1 et aucune racine de module 1. Ces nombres ont été définis par A. M. Bergé et J. Martinet [2]. Comme dans [2], on représente un K-nombre de Pisot θ dans l’algèbre A = r × r , où (r₁,r₂) désigne la signature du corps K, par la suite ( θ σ ) σ de ses...

Carmichael numbers composed of primes from a Beatty sequence

William D. Banks, Aaron M. Yeager (2011)

Colloquium Mathematicae

Let α,β ∈ ℝ be fixed with α > 1, and suppose that α is irrational and of finite type. We show that there are infinitely many Carmichael numbers composed solely of primes from the non-homogeneous Beatty sequence α , β = ( α n + β ) n = 1 . We conjecture that the same result holds true when α is an irrational number of infinite type.

Currently displaying 2281 – 2300 of 16591