On the number of large integer points on elliptic curves
We show that there exist infinitely many positive integers r not of the form (p-1)/2 - ϕ(p-1), thus providing an affirmative answer to a question of Neville Robbins.
For each we consider the -bonacci numbers defined by for and for When these are the usual Fibonacci numbers. Every positive integer may be expressed as a sum of distinct -bonacci numbers in one or more different ways. Let be the number of partitions of as a sum of distinct -bonacci numbers. Using a theorem of Fine and Wilf, we obtain a formula for involving sums of binomial coefficients modulo In addition we show that this formula may be used to determine the number of partitions...
Let be a polynomial of degree at least 2 with coefficients in a number field , let be a sufficiently general element of , and let be a root of . We give precise conditions under which Newton iteration, started at the point , converges -adically to the root for infinitely many places of . As a corollary we show that if is irreducible over of degree at least 3, then Newton iteration converges -adically to any given root of for infinitely many places . We also conjecture that...
We give upper and lower bounds for the number of points on abelian varieties over finite fields, and lower bounds specific to Jacobian varieties. We also determine exact formulas for the maximum and minimum number of points on Jacobian surfaces.
We present various results on the number of prime factors of the parts of a partition of an integer. We study the parity of this number, the extremal orders and we prove a Hardy-Ramanujan type theorem. These results show that for almost all partitions of an integer the sequence of the parts satisfies similar arithmetic properties as the sequence of natural numbers.