The search session has expired. Please query the service again.

Displaying 2721 – 2740 of 3028

Showing per page

On the sum of digits of some sequences of integers

Javier Cilleruelo, Florian Luca, Juanjo Rué, Ana Zumalacárregui (2013)

Open Mathematics

Let b ≥ 2 be a fixed positive integer. We show for a wide variety of sequences {a n}n=1∞ that for almost all n the sum of digits of a n in base b is at least c b log n, where c b is a constant depending on b and on the sequence. Our approach covers several integer sequences arising from number theory and combinatorics.

On the sum of dilations of a set

Antal Balog, George Shakan (2014)

Acta Arithmetica

We show that for any relatively prime integers 1 ≤ p < q and for any finite A ⊂ ℤ one has | p · A + q · A | ( p + q ) | A | - ( p q ) ( p + q - 3 ) ( p + q ) + 1 .

On the sum of the first n values of the Euler function

R. Balasubramanian, Florian Luca, Dimbinaina Ralaivaosaona (2014)

Acta Arithmetica

Let ϕ(n) be the Euler function of n. We put E ( n ) = m n ϕ ( m ) - ( 3 / π ² ) n ² and give an asymptotic formula for the second moment of E(n).

On the sum of two squares and two powers of k

Roger Clement Crocker (2008)

Colloquium Mathematicae

It can be shown that the positive integers representable as the sum of two squares and one power of k (k any fixed integer ≥ 2) have positive density, from which it follows that those integers representable as the sum of two squares and (at most) two powers of k also have positive density. The purpose of this paper is to show that there is an infinity of positive integers not representable as the sum of two squares and two (or fewer) powers of k, k again any fixed integer ≥ 2.

On the sumset of the primes and a linear recurrence

Christian Ballot, Florian Luca (2013)

Acta Arithmetica

Romanoff (1934) showed that integers that are the sum of a prime and a power of 2 have positive lower asymptotic density in the positive integers. We adapt his method by showing more generally the existence of a positive lower asymptotic density for integers that are the sum of a prime and a term of a given nonconstant nondegenerate integral linear recurrence with separable characteristic polynomial.

Currently displaying 2721 – 2740 of 3028