Displaying 261 – 280 of 1526

Showing per page

Small values of the Riemann zeta function on the critical line

Justas Kalpokas, Paulius Šarka (2015)

Acta Arithmetica

We investigate real values of the Riemann zeta function on the critical line. We show that if Gram's points do not intersect with the ordinates of the nontrivial zeros of the Riemann zeta function then the Riemann zeta function takes arbitrarily small real values on the critical line.

Small-sum pairs in abelian groups

Reza Akhtar, Paul Larson (2010)

Journal de Théorie des Nombres de Bordeaux

Let G be an abelian group and A , B two subsets of equal size k such that A + B and A + A both have size 2 k - 1 . Answering a question of Bihani and Jin, we prove that if A + B is aperiodic or if there exist elements a A and b B such that a + b has a unique expression as an element of A + B and a + a has a unique expression as an element of A + A , then A is a translate of B . We also give an explicit description of the various counterexamples which arise when neither condition holds.

Smooth solutions to the a b c equation: the x y z Conjecture

Jeffrey C. Lagarias, Kannan Soundararajan (2011)

Journal de Théorie des Nombres de Bordeaux

This paper studies integer solutions to the a b c equation A + B + C = 0 in which none of A , B , C have a large prime factor. We set H ( A , B , C ) = max ( | A | , | B | , | C | ) , and consider primitive solutions ( gcd ( A , B , C ) = 1 ) having no prime factor larger than ( log H ( A , B , C ) ) κ , for a given finite κ . We show that the a b c Conjecture implies that for any fixed κ < 1 the equation has only finitely many primitive solutions. We also discuss a conditional result, showing that the Generalized Riemann hypothesis (GRH) implies that for any fixed κ > 8 the a b c equation has infinitely many primitive solutions....

Currently displaying 261 – 280 of 1526