Small Prime Solutions of some Additive Equations.
We investigate real values of the Riemann zeta function on the critical line. We show that if Gram's points do not intersect with the ordinates of the nontrivial zeros of the Riemann zeta function then the Riemann zeta function takes arbitrarily small real values on the critical line.
Let be an abelian group and two subsets of equal size such that and both have size . Answering a question of Bihani and Jin, we prove that if is aperiodic or if there exist elements and such that has a unique expression as an element of and has a unique expression as an element of , then is a translate of . We also give an explicit description of the various counterexamples which arise when neither condition holds.
This paper studies integer solutions to the equation in which none of have a large prime factor. We set , and consider primitive solutions () having no prime factor larger than , for a given finite . We show that the Conjecture implies that for any fixed the equation has only finitely many primitive solutions. We also discuss a conditional result, showing that the Generalized Riemann hypothesis (GRH) implies that for any fixed the equation has infinitely many primitive solutions....