Displaying 241 – 260 of 1526

Showing per page

Slopes of modular forms and congruences

Douglas L. Ulmer (1996)

Annales de l'institut Fourier

Our aim in this paper is to prove congruences between on the one hand certain eigenforms of level p N and weight greater than 2 and on the other hand twists of eigenforms of level p N and weight 2. One knows a priori that such congruences exist; the novelty here is that we determine the character of the form of weight 2 and the twist in terms of the slope of the higher weight form, i.e., in terms of the valuation of its eigenvalue for U p . Curiously, we also find a relation between the leading terms of...

Small discriminants of complex multiplication fields of elliptic curves over finite fields

Igor E. Shparlinski (2015)

Czechoslovak Mathematical Journal

We obtain a conditional, under the Generalized Riemann Hypothesis, lower bound on the number of distinct elliptic curves E over a prime finite field 𝔽 p of p elements, such that the discriminant D ( E ) of the quadratic number field containing the endomorphism ring of E over 𝔽 p is small. For almost all primes we also obtain a similar unconditional bound. These lower bounds complement an upper bound of F. Luca and I. E. Shparlinski (2007).

Small exponent point groups on elliptic curves

Florian Luca, James McKee, Igor E. Shparlinski (2006)

Journal de Théorie des Nombres de Bordeaux

Let E be an elliptic curve defined over F q , the finite field of q elements. We show that for some constant η > 0 depending only on q , there are infinitely many positive integers n such that the exponent of E ( F q n ) , the group of F q n -rational points on E , is at most q n exp - n η / log log n . This is an analogue of a result of R. Schoof on the exponent of the group E ( F p ) of F p -rational points, when a fixed elliptic curve E is defined over and the prime p tends to infinity.

Small generators of function fields

Martin Widmer (2010)

Journal de Théorie des Nombres de Bordeaux

Let 𝕂 / k be a finite extension of a global field. Such an extension can be generated over k by a single element. The aim of this article is to prove the existence of a ”small” generator in the function field case. This answers the function field version of a question of Ruppert on small generators of number fields.

Small points on a multiplicative group and class number problem

Francesco Amoroso (2007)

Journal de Théorie des Nombres de Bordeaux

Let V be an algebraic subvariety of a torus 𝔾 m n n and denote by V * the complement in V of the Zariski closure of the set of torsion points of V . By a theorem of Zhang, V * is discrete for the metric induced by the normalized height h ^ . We describe some quantitative versions of this result, close to the conjectural bounds, and we discuss some applications to study of the class group of some number fields.

Currently displaying 241 – 260 of 1526