Diophantische Gleichungen und die universelle Eigenschaft Finslerscher Zahlen.
We investigate zeta regularized products of rational functions. As an application, we obtain the asymptotic expansion of the Euler Gamma function associated with a rational function.
We study the convergence properties of Dirichlet series for a bounded linear operator T in a Banach space X. For an increasing sequence of positive numbers and a sequence of functions analytic in neighborhoods of the spectrum σ(T), the Dirichlet series for is defined by D[f,μ;z](T) = ∑n=0∞ e-μnz fn(T), z∈ ℂ. Moreover, we introduce a family of summation methods called Dirichlet methods and study the ergodic properties of Dirichlet averages for T in the uniform operator topology.
The Riemann zeta-function ζ(s) extends to an outer function in ergodic Hardy spaces on , the infinite-dimensional torus indexed by primes p. This enables us to investigate collectively certain properties of Dirichlet series of the form for in . Among other things, using the Haar measure on for measuring the asymptotic behavior of ζ(s) in the critical strip, we shall prove, in a weak sense, the mean-value theorem for ζ(s), equivalent to the Lindelöf hypothesis.
Soit la discrépance “à l’origine” de la suite . Nous montrons que , quantité inférieure à celle correspondant à la suite de van der Corput. Les techniques utilisées sont celles liées au développement en fraction continue.