The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 21 – 40 of 661

Showing per page

Davenport-Hasse relations and an explicit Langlands correspondence, II : twisting conjectures

Colin J. Bushnell, Guy Henniart (2000)

Journal de théorie des nombres de Bordeaux

Let F / p be a finite field extension. The Langlands correspondence gives a canonical bijection between the set 𝒢 F 0 ( n ) of equivalence classes of irreducible n -dimensional representations of the Weil group 𝒲 F of F and the set 𝒜 F 0 ( n ) of equivalence classes of irreducible supercuspidal representations of GL n ( F ) . This paper is concerned with the case where n = p m . In earlier work, the authors constructed an explicit bijection π : 𝒢 F 0 ( p m ) 𝒜 F 0 ( p m ) using a non-Galois tame base change map. If this tame base change satisfies a certain conjectured...

De l’euclidianité de 2 + 2 + 2 et 2 + 2 pour la norme

Jean-Paul Cerri (2000)

Journal de théorie des nombres de Bordeaux

Cet article a pour objectif de présenter un algorithme permettant de montrer, à l’aide d’un ordinateur, l’euclidianité pour la norme du sous-corps réel maximal K du corps cyclotomique ( ζ 32 ) ζ 32 = e i π / 16 , corps totalement réel de degré 8 et de discriminant 2 147 483 648 , et plus précisément de prouver que M ( K ) = 1 2 . La méthode utilisée permet par ailleurs de prouver que pour K = ( ζ 16 + ζ 16 - 1 ) , on a également M ( K ) = 1 2 (conjecture de H. Cohn et J. Deutsch). Les résultats relatifs à ce cas sont exposés en fin d’article.

Currently displaying 21 – 40 of 661