Displaying 381 – 400 of 1340

Showing per page

The evaluation of two-dimensional lattice sums via Ramanujan's theta functions

Ping Xu (2014)

Acta Arithmetica

We analyze various generalized two-dimensional lattice sums, one of which arose from the solution to a certain Poisson equation. We evaluate certain lattice sums in closed form using results from Ramanujan's theory of theta functions, continued fractions and class invariants. Many explicit examples are given.

The exceptional set for Diophantine inequality with unlike powers of prime variables

Wenxu Ge, Feng Zhao (2018)

Czechoslovak Mathematical Journal

Suppose that λ 1 , λ 2 , λ 3 , λ 4 are nonzero real numbers, not all negative, δ > 0 , 𝒱 is a well-spaced set, and the ratio λ 1 / λ 2 is algebraic and irrational. Denote by E ( 𝒱 , N , δ ) the number of v 𝒱 with v N such that the inequality | λ 1 p 1 2 + λ 2 p 2 3 + λ 3 p 3 4 + λ 4 p 4 5 - v | < v - δ has no solution in primes p 1 , p 2 , p 3 , p 4 . We show that E ( 𝒱 , N , δ ) N 1 + 2 δ - 1 / 72 + ε for any ε > 0 .

The exceptional set of Goldbach numbers (II)

Hongze Li (2000)

Acta Arithmetica

1. Introduction. A positive number which is a sum of two odd primes is called a Goldbach number. Let E(x) denote the number of even numbers not exceeding x which cannot be written as a sum of two odd primes. Then the Goldbach conjecture is equivalent to proving that E(x) = 2 for every x ≥ 4. E(x) is usually called the exceptional set of Goldbach numbers. In [8] H. L. Montgomery and R. C. Vaughan proved that E ( x ) = O ( x 1 - Δ ) for some positive constant Δ > 0 . I n [ 3 ] C h e n a n d P a n p r o v e d t h a t o n e c a n t a k e Δ > 0 . 01 . I n [ 6 ] , w e p r o v e d t h a t E ( x ) = O ( x 0 . 921 ) . In this paper we prove the following result. Theorem....

The factorization of f ( x ) x n + g ( x ) with f ( x ) monic and of degree 2 .

Joshua Harrington, Andrew Vincent, Daniel White (2013)

Journal de Théorie des Nombres de Bordeaux

In this paper we investigate the factorization of the polynomials f ( x ) x n + g ( x ) [ x ] in the special case where f ( x ) is a monic quadratic polynomial with negative discriminant. We also mention similar results in the case that f ( x ) is monic and linear.

Currently displaying 381 – 400 of 1340