The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 4161 –
4180 of
16591
We associate with a word on a finite alphabet an episturmian (or Arnoux-Rauzy) morphism and a palindrome. We study their relations with the similar ones for the reversal of . Then when we deduce, using the sturmian words that are the fixed points of the two morphisms, a proof of a Galois theorem on purely periodic continued fractions whose periods are the reversal of each other.
We associate with a word w on a finite alphabet A an episturmian (or Arnoux-Rauzy) morphism and a palindrome. We study their relations with the similar ones for the reversal of w. Then when |A|=2 we deduce, using the Sturmian words that are the fixed points of the two morphisms, a proof of a Galois theorem on purely periodic continued fractions whose periods are the reversal of each other.
Using a generalization due to Lerch [Bull. Int. Acad. François Joseph 3 (1896)] of a classical lemma of Zolotarev, employed in Zolotarev's proof of the law of quadratic reciprocity, we determine necessary and sufficient conditions for the difference of two Dedekind sums to be in 8ℤ. These yield new necessary conditions for equality of two Dedekind sums. In addition, we resolve a conjecture of Girstmair [arXiv:1501.00655].
Currently displaying 4161 –
4180 of
16591