Some explicit constructions of sets with more sums than differences
Euler's pentagonal number theorem was a spectacular achievement at the time of its discovery, and is still considered to be a beautiful result in number theory and combinatorics. In this paper, we obtain three new finite generalizations of Euler's pentagonal number theorem.
Let be a convergent series of positive real numbers. L. Olivier proved that if the sequence is non-increasing, then . In the present paper: (a) We formulate and prove a necessary and sufficient condition for having ; Olivier’s theorem is a consequence of our Theorem . (b) We prove properties analogous to Olivier’s property when the usual convergence is replaced by the -convergence, that is a convergence according to an ideal of subsets of . Again, Olivier’s theorem is a consequence of...