The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 4341 – 4360 of 16591

Showing per page

Euler characteristics of moduli spaces of curves

Gilberto Bini, John Harer (2011)

Journal of the European Mathematical Society

Let M g n be the moduli space of n -pointed Riemann surfaces of genus g . Denote by M g n ¯ the Deligne-Mumford compactification of M g n . In the present paper, we calculate the orbifold and the ordinary Euler characteristic of M g n ¯ for any g and n such that n > 2 - 2 g .

Euler system for Galois deformations

Tadashi Ochiai (2005)

Annales de l’institut Fourier

In this paper, we develop the Euler system theory for Galois deformations. By applying this theory to the Beilinson-Kato Euler system for Hida’s nearly ordinary modular deformations, we prove one of the inequalities predicted by the two-variable Iwasawa main conjecture. Our method of the proof of the Euler system theory is based on non-arithmetic specializations. This gives a new simplified proof of the inequality between the characteristic ideal of the Selmer group of a Galois deformation and the...

Currently displaying 4341 – 4360 of 16591