Ergänzung zur Arbeit "Quadratische Formen über affinen Algebren und ein algebraischer Beweis des Satzes von Borsuk-Ulam".
We study the convergence of the ergodic averages where is a bounded sequence and a strictly increasing sequence of integers such that for some . Moreover we give explicit such sequences and and we investigate in particular the case where is a -multiplicative sequence.
We prove a new type of universality theorem for the Riemann zeta-function and other -functions (which are universal in the sense of Voronin’s theorem). In contrast to previous universality theorems for the zeta-function or its various generalizations, here the approximating shifts are taken from the orbit of an ergodic transformation on the real line.
Let = [0,1) be the additive group of real numbers modulo 1, α ∈ be an irrational number and t ∈ . We study ergodicity of skew product extensions T : × ℤ² → × ℤ², .