Displaying 441 – 460 of 1526

Showing per page

Some new directions in p -adic Hodge theory

Kiran S. Kedlaya (2009)

Journal de Théorie des Nombres de Bordeaux

We recall some basic constructions from p -adic Hodge theory, then describe some recent results in the subject. We chiefly discuss the notion of B -pairs, introduced recently by Berger, which provides a natural enlargement of the category of p -adic Galois representations. (This enlargement, in a different form, figures in recent work of Colmez, Bellaïche, and Chenevier on trianguline representations.) We also discuss results of Liu that indicate that the formalism of Galois cohomology, including Tate...

Some new infinite families of congruences modulo 3 for overpartitions into odd parts

Ernest X. W. Xia (2016)

Colloquium Mathematicae

Let p ̅ o ( n ) denote the number of overpartitions of n in which only odd parts are used. Some congruences modulo 3 and powers of 2 for the function p ̅ o ( n ) have been derived by Hirschhorn and Sellers, and Lovejoy and Osburn. In this paper, employing 2-dissections of certain quotients of theta functions due to Ramanujan, we prove some new infinite families of Ramanujan-type congruences for p ̅ o ( n ) modulo 3. For example, we prove that for n, α ≥ 0, p ̅ o ( 4 α ( 24 n + 17 ) ) p ̅ o ( 4 α ( 24 n + 23 ) ) 0 ( m o d 3 ) .

Currently displaying 441 – 460 of 1526