Displaying 841 – 860 of 3028

Showing per page

On Grosswald's conjecture on primitive roots

Stephen D. Cohen, Tomás Oliveira e Silva, Tim Trudgian (2016)

Acta Arithmetica

Grosswald’s conjecture is that g(p), the least primitive root modulo p, satisfies g(p) ≤ √p - 2 for all p > 409. We make progress towards this conjecture by proving that g(p) ≤ √p -2 for all 409 < p < 2 . 5 × 10 15 and for all p > 3 . 38 × 10 71 .

On higher moments of Hecke eigenvalues attached to cusp forms

Guodong Hua (2022)

Czechoslovak Mathematical Journal

Let f , g and h be three distinct primitive holomorphic cusp forms of even integral weights k 1 , k 2 and k 3 for the full modular group Γ = SL ( 2 , ) , respectively, and let λ f ( n ) , λ g ( n ) and λ h ( n ) denote the n th normalized Fourier coefficients of f , g and h , respectively. We consider the cancellations of sums related to arithmetic functions λ g ( n ) , λ h ( n ) twisted by λ f ( n ) and establish the following results: n x λ f ( n ) λ g ( n ) i λ h ( n ) j f , g , h , ε x 1 - 1 / 2 i + j + ε for any ε > 0 , where 1 i 2 , j 5 are any fixed positive integers.

On Hilbert modular forms modulo p: explicit ring structure.

Shoyu Nagaoka (2006)

Revista Matemática Iberoamericana

H. P. F. Swinnerton-Dyer determined the structure of the ring of modular forms modulo p in the elliptic modular case. In this paper, the structure of the ring of Hilbert modular forms modulo p is studied. In the case where the discriminant of corresponding quadratic field is 8 (or 5), the explicit structure is determined.

Currently displaying 841 – 860 of 3028