The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 81 –
100 of
3028
For a number field , let denote its Hilbert -class field, and put . We will determine all imaginary quadratic number fields such that is abelian or metacyclic, and we will give in terms of generators and relations.
For a finite group G let 𝒦₂(G) denote the set of normal number fields (within ℂ) with Galois group G which are 2-ramified, that is, unramified outside {2,∞}. We describe the 2-groups G for which 𝒦₂(G) ≠ ∅, and determine the fields in 𝒦₂(G) for certain distinguished 2-groups G appearing (dihedral, semidihedral, modular and semimodular groups). Our approach is based on Fröhlich's theory of central field extensions, and makes use of ring class field constructions (complex multiplication).
Un intero positivo si dice pratico se ogni intero con può essere espresso come una somma di divisori distinti positivi di . In questo articolo è affrontato il problema dell'esistenza di infinite cinquine di numeri pratici della forma .
In this paper, we study the properties of the sequence of polynomials given by , for , where is non-constant and the characteristic of is . This complements some results from R. Euler, L.H. Gallardo: On explicit formulae and linear recurrent sequences, Acta Math. Univ. Comenianae, 80 (2011) 213-219.
A homothetic arithmetic function of ratio is a function such that for every . Periodic arithmetic funtions are always homothetic, while the converse is not true in general. In this paper we study homothetic and periodic arithmetic functions. In particular we give an upper bound for the number of elements of in terms of the period and the ratio of .
Currently displaying 81 –
100 of
3028