The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 1141 – 1160 of 3028

Showing per page

On power integral bases for certain pure number fields defined by x 18 - m

Lhoussain El Fadil (2022)

Commentationes Mathematicae Universitatis Carolinae

Let K = ( α ) be a number field generated by a complex root α of a monic irreducible polynomial f ( x ) = x 18 - m , m 1 , is a square free rational integer. We prove that if m 2 or 3 ( mod 4 ) and m ¬ 1 ( mod 9 ) , then the number field K is monogenic. If m 1 ( mod 4 ) or m 1 ( mod 9 ) , then the number field K is not monogenic.

On powerful numbers.

Mollin, R.A., Walsh, P.G. (1986)

International Journal of Mathematics and Mathematical Sciences

On prime factors of integers of the form (ab+1)(bc+1)(ca+1)

K. Győry, A. Sárközy (1997)

Acta Arithmetica

1. Introduction. For any integer n > 1 let P(n) denote the greatest prime factor of n. Győry, Sárközy and Stewart [5] conjectured that if a, b and c are pairwise distinct positive integers then (1) P((ab+1)(bc+1)(ca+1)) tends to infinity as max(a,b,c) → ∞. In this paper we confirm this conjecture in the special case when at least one of the numbers a, b, c, a/b, b/c, c/a has bounded prime factors. We prove our result in a quantitative form by showing that if is a finite set of triples (a,b,c)...

Currently displaying 1141 – 1160 of 3028