On positive integers with a certain nondivisibility property.
Let be a number field generated by a complex root of a monic irreducible polynomial , , is a square free rational integer. We prove that if or and , then the number field is monogenic. If or , then the number field is not monogenic.
1. Introduction. For any integer n > 1 let P(n) denote the greatest prime factor of n. Győry, Sárközy and Stewart [5] conjectured that if a, b and c are pairwise distinct positive integers then (1) P((ab+1)(bc+1)(ca+1)) tends to infinity as max(a,b,c) → ∞. In this paper we confirm this conjecture in the special case when at least one of the numbers a, b, c, a/b, b/c, c/a has bounded prime factors. We prove our result in a quantitative form by showing that if is a finite set of triples (a,b,c)...