The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 1161 – 1180 of 3028

Showing per page

On prime values of reducible quadratic polynomials

W. Narkiewicz, T. Pezda (2002)

Colloquium Mathematicae

It is shown that Dickson’s Conjecture about primes in linear polynomials implies that if f is a reducible quadratic polynomial with integral coefficients and non-zero discriminant then for every r there exists an integer N r such that the polynomial f ( X ) / N r represents at least r distinct primes.

On prolongations of rank one discrete valuations

Lhoussain El Fadil (2019)

Commentationes Mathematicae Universitatis Carolinae

Let ( K , ν ) be a valued field, where ν is a rank one discrete valuation. Let R be its ring of valuation, 𝔪 its maximal ideal, and L an extension of K , defined by a monic irreducible polynomial F ( X ) R [ X ] . Assume that F ¯ ( X ) factors as a product of r distinct powers of monic irreducible polynomials. In this paper a condition which guarantees the existence of exactly r distinct valuations of K extending ν is given, in such a way that it generalizes the results given in the paper “Prolongations of valuations to finite...

On pseudoprimes having special forms and a solution of K. Szymiczek’s problem

Andrzej Rotkiewicz (2005)

Acta Mathematica Universitatis Ostraviensis

We use the properties of p -adic integrals and measures to obtain general congruences for Genocchi numbers and polynomials and tangent coefficients. These congruences are analogues of the usual Kummer congruences for Bernoulli numbers, generalize known congruences for Genocchi numbers, and provide new congruences systems for Genocchi polynomials and tangent coefficients.

Currently displaying 1161 – 1180 of 3028