L’azione del gruppo simplettico associata ad un’estensione quadratica di campi
Nous généralisons en dimension supérieure un théorème d’Amoroso et Zannier concernant le problème de Lehmer relatif. Nous minorons la hauteur d’un point d’un tore en fonction de son indice d’obstruction sur , l’extension abélienne maximale de , à condition qu’il ne soit pas contenu dans une sous-variété de torsion de petit degré. Nous en déduisons une minoration du minimum essentiel d’une sous-variété non contenue dans un sous-groupe algébrique propre en fonction de son indice d’obstruction sur...
La théorie des nombres premiers généralisés de Beurling fait intervenir , la fonction de décompte des entiers généralisés, , celle des nombres premiers généralisés, et , la fonction dzeta adaptée. Les hypothèses sur se traduisent en propriétés de , qui entraînent ou non le “théorème des nombres premiers” (TNP) ou “ l’inégalité de Tchebycheff” (IT) . L’article est consacré au rôle de la fonction , en relation avec les algèbres et . On montre que l’hypothèse entraîne (TNP) quand et...
Nous étudions une loi de composition sur les carrés magiques, qui a déjà été introduite dans la littérature, qui munit l'ensemble de tous les carrés magiques d'une structure de semi-groupe (monoïde). Nous prouvons ensuite une conjecture de Adler et Li, ce semi-groupe est libre.