Displaying 141 – 160 of 460

Showing per page

Le système d’Euler de Kato

Shanwen Wang (2013)

Journal de Théorie des Nombres de Bordeaux

Ce texte est consacré au système d’Euler de Kato, construit à partir des unités modulaires, et à son image par l’application exponentielle duale (loi de réciprocité explicite de Kato). La présentation que nous en donnons est sensiblement différente de la présentation originelle de Kato.

Le théorème de Riesz-Raikov-Bourgain pour un endomorphisme algébrique de p

Jean-Claude Lootgieter (2007)

Annales de l’institut Fourier

Le théorème classique de Riesz-Raikov assure que, pour tout entier θ > 1 et toute f de L 1 ( 𝕋 ) , où 𝕋 = / , les moyennes 1 N 1 N f ( θ n x ) convergent vers 𝕋 f ( t ) d t pour presque tout point x de . J.Bourgain (cf.Israël Math. Conf. Proc. 1990) a prouvé que la convergence précédente a lieu pour tout réel algébrique θ > 1 et toute  f de  L 2 ( 𝕋 ) . Dans cet article nous prouvons que, si ϕ est un endomorphisme de  p algébrique sur , dont les valeurs propres sont toutes de module  > 1 , alors pour toute f de L 2 ( 𝕋 p ) , les moyennes ( 1 / N ) 1 N f ( ϕ n x ) convergent vers 𝕋 p f ( t ) d t pour presque tout point x de p . Nous...

Leaping convergents of Hurwitz continued fractions

Takao Komatsu (2011)

Discussiones Mathematicae - General Algebra and Applications

Let pₙ/qₙ = [a₀;a₁,...,aₙ] be the n-th convergent of the continued fraction expansion of [a₀;a₁,a₂,...]. Leaping convergents are those of every r-th convergent p r n + i / q r n + i (n = 0,1,2,...) for fixed integers r and i with r ≥ 2 and i = 0,1,...,r-1. The leaping convergents for the e-type Hurwitz continued fractions have been studied. In special, recurrence relations and explicit forms of such leaping convergents have been treated. In this paper, we consider recurrence relations and explicit forms of the leaping...

Leaping convergents of Tasoev continued fractions

Takao Komatsu (2011)

Discussiones Mathematicae - General Algebra and Applications

Denote the n-th convergent of the continued fraction by pₙ/qₙ = [a₀;a₁,...,aₙ]. We give some explicit forms of leaping convergents of Tasoev continued fractions. For instance, [0;ua,ua²,ua³,...] is one of the typical types of Tasoev continued fractions. Leaping convergents are of the form p r n + i / q r n + i (n=0,1,2,...) for fixed integers r ≥ 2 and 0 ≤ i ≤ r-1.

Left MQQs whose left parastrophe is also quadratic

Simona Samardjiska, Danilo Gligoroski (2012)

Commentationes Mathematicae Universitatis Carolinae

A left quasigroup ( Q , q ) of order 2 w that can be represented as a vector of Boolean functions of degree 2 is called a left multivariate quadratic quasigroup (LMQQ). For a given LMQQ there exists a left parastrophe operation q defined by: q ( u , v ) = w q ( u , w ) = v that also defines a left multivariate quasigroup. However, in general, ( Q , q ) is not quadratic. Even more, representing it in a symbolic form may require exponential time and space. In this work we investigate the problem of finding a subclass of LMQQs whose left parastrophe...

Legendre polynomials and supercongruences

Zhi-Hong Sun (2013)

Acta Arithmetica

Let p > 3 be a prime, and let Rₚ be the set of rational numbers whose denominator is not divisible by p. Let Pₙ(x) be the Legendre polynomials. In this paper we mainly show that for m,n,t ∈ Rₚ with m≢ 0 (mod p), P [ p / 6 ] ( t ) - ( 3 / p ) x = 0 p - 1 ( ( x ³ - 3 x + 2 t ) / p ) ( m o d p ) and ( x = 0 p - 1 ( ( x ³ + m x + n ) / p ) ) ² ( ( - 3 m ) / p ) k = 0 [ p / 6 ] 2 k k 3 k k 6 k 3 k ( ( 4 m ³ + 27 n ² ) / ( 12 ³ · 4 m ³ ) ) k ( m o d p ) , where (a/p) is the Legendre symbol and [x] is the greatest integer function. As an application we solve some conjectures of Z. W. Sun and the author concerning k = 0 p - 1 2 k k 3 k k 6 k 3 k / m k ( m o d p ² ) , where m is an integer not divisible by p.

Currently displaying 141 – 160 of 460