An inequality for Fibonacci numbers
We extend an inequality for Fibonacci numbers published by P. G. Popescu and J. L. Díaz-Barrero in 2006.
We extend an inequality for Fibonacci numbers published by P. G. Popescu and J. L. Díaz-Barrero in 2006.
Given a representation of a local unitary group and another local unitary group , either the Theta correspondence provides a representation of or we set . If is fixed and varies in a Witt tower, a natural question is: for which is ? For given dimension there are exactly two isometry classes of unitary spaces that we denote . For let us denote the minimal of the same parity of such that , then we prove that where is the dimension of .
I hope this article will be helpful to people who might want a quick overview of how modular representations fit into the theory of deformations of Galois representations. There is also a more specific aim: to sketch a construction of a point-set topological'' configuration (the image of an infinite fern'') which emerges from consideration of modular representations in the universal deformation space of all Galois representations. This is a configuration hinted previously, but now, thanks to some...
Let be an elliptic modular form level of N. We present a criterion for the integrality of at primes not dividing N. The result is in terms of the values at CM points of the forms obtained applying to the iterates of the Maaß differential operators.