On the divisibility properties of integers (I)
Let be an integer part of and be the number of positive divisor of . Inspired by some results of M. Jutila (1987), we prove that for , where is the Euler constant and is the Piatetski-Shapiro sequence. This gives an improvement upon the classical result of this problem.
Let be a local field, and where denotes the characteristic of the residue field. We prove that the minimal subsets of the dynamical system are cycles and describe the cycles of this system.
We discuss the equation in which a, b, and c are non-zero relatively prime integers, p is an odd prime number, and α is a positive integer. The technique used to prove Fermat’s Last Theorem shows that the equation has no solutions with α < 1 or b even. When α=1 and b is odd, there are the two trivial solutions (±1, ∓ 1, ±1). In 1952, Dénes conjectured that these are the only ones. Using methods of Darmon, we prove this conjecture for p≡ 1 mod 4.
We study coprime integer solutions to the equation a³ + b³ⁿ = c² using Galois representations and modular forms. This case represents perhaps the last natural family of generalized Fermat equations descended from spherical cases which is amenable to resolution using the so-called modular method. Our techniques involve an elaborate combination of ingredients, ranging from ℚ-curves and a delicate multi-Frey approach, to appeal to intricate image of inertia arguments.