On the distribution of the elliptic subset sum generator of pseudorandom numbers.
We give asymptotic formulas for some average values of the Euler function on shifted smooth numbers. The result is based on various estimates on the distribution of smooth numbers in arithmetic progressions which are due to A. Granville and É. Fouvry & G. Tenenbaum.
Consider the region obtained by removing from the discs of radius , centered at the points of integer coordinates with . We are interested in the distribution of the free path length (exit time) of a point particle, moving from along a linear trajectory of direction , as . For every integer number , we prove the weak convergence of the probability measures associated with the random variables , explicitly computing the limiting distribution. For , respectively , this result leads...
We investigate the distribution of (which counts the number of Farey fractions of order n) in residue classes. While numerical computations suggest that Φ(n) is equidistributed modulo q if q is odd, and is equidistributed modulo the odd residue classes modulo q when q is even, we prove that the set of integers n such that Φ(n) lies in these residue classes has a positive lower density when q = 3,4. We also provide a simple proof, based on the Selberg-Delange method, of a result of T. Dence and...
We consider the polynomial for which arises as the characteristic polynomial of the -generalized Fibonacci sequence. In this short paper, we give estimates for the absolute values of the roots of which lie inside the unit disk.
Let be a set of distinct positive integers and an integer. Denote the power GCD (resp. power LCM) matrix on having the -th power of the greatest common divisor (resp. the -th power of the least common multiple ) as the -entry of the matrix by (resp. . We call the set an odd gcd closed (resp. odd lcm closed) set if every element in is an odd number and (resp. ) for all . In studying the divisibility of the power LCM and power GCD matrices, Hong conjectured in 2004 that...