Displaying 41 – 60 of 135

Showing per page

On Hong’s conjecture for power LCM matrices

Wei Cao (2007)

Czechoslovak Mathematical Journal

A set 𝒮 = { x 1 , ... , x n } of n distinct positive integers is said to be gcd-closed if ( x i , x j ) 𝒮 for all 1 i , j n . Shaofang Hong conjectured in 2002 that for a given positive integer t there is a positive integer k ( t ) depending only on t , such that if n k ( t ) , then the power LCM matrix ( [ x i , x j ] t ) defined on any gcd-closed set 𝒮 = { x 1 , ... , x n } is nonsingular, but for n k ( t ) + 1 , there exists a gcd-closed set 𝒮 = { x 1 , ... , x n } such that the power LCM matrix ( [ x i , x j ] t ) on 𝒮 is singular. In 1996, Hong proved k ( 1 ) = 7 and noted k ( t ) 7 for all t 2 . This paper develops Hong’s method and provides a new idea to calculate...

On integers not of the form n - φ (n)

J. Browkin, A. Schinzel (1995)

Colloquium Mathematicae

W. Sierpiński asked in 1959 (see [4], pp. 200-201, cf. [2]) whether there exist infinitely many positive integers not of the form n - φ(n), where φ is the Euler function. We answer this question in the affirmative by proving Theorem. None of the numbers 2 k · 509203 (k = 1, 2,...) is of the form n - φ(n).

On near-perfect and deficient-perfect numbers

Min Tang, Xiao-Zhi Ren, Meng Li (2013)

Colloquium Mathematicae

For a positive integer n, let σ(n) denote the sum of the positive divisors of n. Let d be a proper divisor of n. We call n a near-perfect number if σ(n) = 2n + d, and a deficient-perfect number if σ(n) = 2n - d. We show that there is no odd near-perfect number with three distinct prime divisors and determine all deficient-perfect numbers with at most two distinct prime factors.

On near-perfect numbers

Min Tang, Xiaoyan Ma, Min Feng (2016)

Colloquium Mathematicae

For a positive integer n, let σ(n) denote the sum of the positive divisors of n. We call n a near-perfect number if σ(n) = 2n + d where d is a proper divisor of n. We show that the only odd near-perfect number with four distinct prime divisors is 3⁴·7²·11²·19².

Currently displaying 41 – 60 of 135