The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 141 – 160 of 487

Showing per page

General Dirichlet series, arithmetic convolution equations and Laplace transforms

Helge Glöckner, Lutz G. Lucht, Štefan Porubský (2009)

Studia Mathematica

In the earlier paper [Proc. Amer. Math. Soc. 135 (2007)], we studied solutions g: ℕ → ℂ to convolution equations of the form a d g d + a d - 1 g ( d - 1 ) + + a g + a = 0 , where a , . . . , a d : are given arithmetic functions associated with Dirichlet series which converge on some right half plane, and also g is required to be such a function. In this article, we extend our previous results to multidimensional general Dirichlet series of the form x X f ( x ) e - s x ( s k ), where X [ 0 , ) k is an additive subsemigroup. If X is discrete and a certain solvability criterion is satisfied,...

Inequalities for Taylor series involving the divisor function

Horst Alzer, Man Kam Kwong (2022)

Czechoslovak Mathematical Journal

Let T ( q ) = k = 1 d ( k ) q k , | q | < 1 , where d ( k ) denotes the number of positive divisors of the natural number k . We present monotonicity properties of functions defined in terms of T . More specifically, we prove that H ( q ) = T ( q ) - log ( 1 - q ) log ( q ) is strictly increasing on ( 0 , 1 ) , while F ( q ) = 1 - q q H ( q ) is strictly decreasing on ( 0 , 1 ) . These results are then applied to obtain various inequalities, one of which states that the double inequality α q 1 - q + log ( 1 - q ) log ( q ) < T ( q ) < β q 1 - q + log ( 1 - q ) log ( q ) , 0 < q < 1 , holds with the best possible constant factors α = γ and β = 1 . Here, γ denotes Euler’s constant. This refines a result of Salem, who proved the inequalities...

Inequalities for the arithmetical functions of Euler and Dedekind

Horst Alzer, Man Kam Kwong (2020)

Czechoslovak Mathematical Journal

For positive integers n , Euler’s phi function and Dedekind’s psi function are given by φ ( n ) = n p n p prime 1 - 1 p and ψ ( n ) = n p n p prime 1 + 1 p , respectively. We prove that for all n 2 we have 1 - 1 n n - 1 1 + 1 n n + 1 φ ( n ) n φ ( n ) ψ ( n ) n ψ ( n ) and φ ( n ) n ψ ( n ) ψ ( n ) n φ ( n ) 1 - 1 n n + 1 1 + 1 n n - 1 . The sign of equality holds if and only if n is a prime. The first inequality refines results due to Atanassov (2011) and Kannan & Srikanth (2013).

Currently displaying 141 – 160 of 487