The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 5

Displaying 81 – 97 of 97

Showing per page

On the least common multiple of Lucas subsequences

Shigeki Akiyama, Florian Luca (2013)

Acta Arithmetica

We compare the growth of the least common multiple of the numbers u a 1 , . . . , u a n and | u a 1 u a n | , where ( u n ) n 0 is a Lucas sequence and ( a n ) n 0 is some sequence of positive integers.

On the Lucas sequence equations Vₙ = kVₘ and Uₙ = kUₘ

Refik Keskin, Zafer Şiar (2013)

Colloquium Mathematicae

Let P and Q be nonzero integers. The sequences of generalized Fibonacci and Lucas numbers are defined by U₀ = 0, U₁ = 1 and U n + 1 = P U - Q U n - 1 for n ≥ 1, and V₀ = 2, V₁ = P and V n + 1 = P V - Q V n - 1 for n ≥ 1, respectively. In this paper, we assume that P ≥ 1, Q is odd, (P,Q) = 1, Vₘ ≠ 1, and V r 1 . We show that there is no integer x such that V = V r V x ² when m ≥ 1 and r is an even integer. Also we completely solve the equation V = V V r x ² for m ≥ 1 and r ≥ 1 when Q ≡ 7 (mod 8) and x is an even integer. Then we show that when P ≡ 3 (mod 4) and Q ≡ 1 (mod...

On the Number of Partitions of an Integer in the m -bonacci Base

Marcia Edson, Luca Q. Zamboni (2006)

Annales de l’institut Fourier

For each m 2 , we consider the m -bonacci numbers defined by F k = 2 k for 0 k m - 1 and F k = F k - 1 + F k - 2 + + F k - m for k m . When m = 2 , these are the usual Fibonacci numbers. Every positive integer n may be expressed as a sum of distinct m -bonacci numbers in one or more different ways. Let R m ( n ) be the number of partitions of n as a sum of distinct m -bonacci numbers. Using a theorem of Fine and Wilf, we obtain a formula for R m ( n ) involving sums of binomial coefficients modulo 2 . In addition we show that this formula may be used to determine the number of partitions...

On the prime density of Lucas sequences

Pieter Moree (1996)

Journal de théorie des nombres de Bordeaux

The density of primes dividing at least one term of the Lucas sequence L n ( P ) n = 0 , defined by L 0 ( P ) = 2 , L 1 ( P ) = P and L n ( P ) = P L n - 1 ( P ) + L n - 2 ( P ) for n 2 , with P an arbitrary integer, is determined.

On the quartic character of quadratic units

Zhi-Hong Sun (2013)

Acta Arithmetica

Let ℤ be the set of integers, and let (m,n) be the greatest common divisor of integers m and n. Let p be a prime of the form 4k+1 and p = c²+d² with c,d ∈ ℤ, d = 2 r d and c ≡ d₀ ≡ 1 (mod 4). In the paper we determine ( b + ( b ² + 4 α ) / 2 ) ( p - 1 ) / 4 ) ( m o d p ) for p = x²+(b²+4α)y² (b,x,y ∈ ℤ, 2∤b), and ( 2 a + 4 a ² + 1 ) ( p - 1 ) / 4 ( m o d p ) for p = x²+(4a²+1)y² (a,x,y∈ℤ) on the condition that (c,x+d) = 1 or (d₀,x+c) = 1. As applications we obtain the congruence for U ( p - 1 ) / 4 ( m o d p ) and the criterion for p | U ( p - 1 ) / 8 (if p ≡ 1 (mod 8)), where Uₙ is the Lucas sequence given by U₀ = 0, U₁ = 1 and U n + 1 = b U + U n - 1 ( n 1 ) , and b ≢...

On the spacing between terms of generalized Fibonacci sequences

Diego Marques (2014)

Colloquium Mathematicae

For k ≥ 2, the k-generalized Fibonacci sequence ( F ( k ) ) is defined to have the initial k terms 0,0,...,0,1 and be such that each term afterwards is the sum of the k preceding terms. We will prove that the number of solutions of the Diophantine equation F ( k ) - F ( ) = c > 0 (under some weak assumptions) is bounded by an effectively computable constant depending only on c.

On useful schema in survival analysis after heart attack

Czesław Stępniak (2014)

Discussiones Mathematicae Probability and Statistics

Recent model of lifetime after a heart attack involves some integer coefficients. Our goal is to get these coefficients in simple way and transparent form. To this aim we construct a schema according to a rule which combines the ideas used in the Pascal triangle and the generalized Fibonacci and Lucas numbers

Currently displaying 81 – 97 of 97

Previous Page 5