On the Diophantine equation
In this study, we determine when the Diophantine equation has an infinite number of positive integer solutions and for Moreover, we give all positive integer solutions of the same equation for in terms of generalized Fibonacci sequence. Lastly, we formulate a conjecture related to the Diophantine equation .
Let p denote a prime number. P. Samuel recently solved the problem of determining all squares in the linear recurrence sequence {Tₙ}, where Tₙ and Uₙ satisfy Tₙ² - pUₙ² = 1. Samuel left open the problem of determining all squares in the sequence {Uₙ}. This problem was recently solved by the authors. In the present paper, we extend our previous joint work by completely solving the equation Uₙ = bx², where b is a fixed positive squarefree integer. This result also extends previous work of the second...
For an integer k ≥ 2, let be the k-Fibonacci sequence which starts with 0,..., 0,1 (k terms) and each term afterwards is the sum of the k preceding terms. This paper completes a previous work of Marques (2014) which investigated the spacing between terms of distinct k-Fibonacci sequences.
We consider the polynomial for which arises as the characteristic polynomial of the -generalized Fibonacci sequence. In this short paper, we give estimates for the absolute values of the roots of which lie inside the unit disk.
In this note, we estimate the distance between two -nomial coefficients , where and is an integer.
Let and define , the -generalized Fibonacci sequence whose terms satisfy the recurrence relation , with initial conditions ( terms) and such that the first nonzero term is . The sequences and are the known Fibonacci and Tribonacci sequences, respectively. In 2005, Noe and Post made a conjecture related to the possible solutions of the Diophantine equation . In this note, we use transcendental tools to provide a general method for finding the intersections which gives evidence supporting...