The search session has expired. Please query the service again.
The goal of this paper is to study certain -adic differential operators on automorphic forms on . These operators are a generalization to the higher-dimensional, vector-valued situation of the -adic differential operators constructed for Hilbert modular forms by N. Katz. They are a generalization to the -adic case of the -differential operators first studied by H. Maass and later studied extensively by M. Harris and G. Shimura. The operators should be useful in the construction of certain -adic...
On décrit dans cet article une version effective d’un théorème de Rumely : on peut
trouver beaucoup de points entiers sur des ouverts (assez grands) de variétés
arithmétiques, tout en contrôlant la hauteur de ces points. On applique ensuite ce
résultat :- aux modèles de variétés abéliennes;- à la démonstration d’un
analogue arithmétique des théorèmes de Bertini.
Let be a field of characteristic . Let be a over (i.e., an -truncated Barsotti–Tate group over ). Let be a -scheme and let be a over . Let be the subscheme of which describes the locus where is locally for the fppf topology isomorphic to . If , we show that is pure in , i.e. the immersion is affine. For , we prove purity if satisfies a certain technical property depending only on its -torsion . For , we apply the developed techniques to show that all level ...
Currently displaying 1 –
8 of
8