The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 4 of 4

Showing per page

Field of moduli versus field of definition for cyclic covers of the projective line

Aristides Kontogeorgis (2009)

Journal de Théorie des Nombres de Bordeaux

We give a criterion, based on the automorphism group, for certain cyclic covers of the projective line to be defined over their field of moduli. An example of a cyclic cover of the complex projective line with field of moduli that can not be defined over is also given.

Fields of moduli of three-point G -covers with cyclic p -Sylow, II

Andrew Obus (2013)

Journal de Théorie des Nombres de Bordeaux

We continue the examination of the stable reduction and fields of moduli of G -Galois covers of the projective line over a complete discrete valuation field of mixed characteristic ( 0 , p ) , where G has a cyclic p -Sylow subgroup P of order p n . Suppose further that the normalizer of P acts on P via an involution. Under mild assumptions, if f : Y 1 is a three-point G -Galois cover defined over ¯ , then the n th higher ramification groups above p for the upper numbering of the (Galois closure of the) extension K / vanish,...

Frobenius nonclassicality with respect to linear systems of curves of arbitrary degree

Nazar Arakelian, Herivelto Borges (2015)

Acta Arithmetica

For each integer s ≥ 1, we present a family of curves that are q -Frobenius nonclassical with respect to the linear system of plane curves of degree s. In the case s=2, we give necessary and sufficient conditions for such curves to be q -Frobenius nonclassical with respect to the linear system of conics. In the q -Frobenius nonclassical cases, we determine the exact number of q -rational points. In the remaining cases, an upper bound for the number of q -rational points will follow from Stöhr-Voloch...

Currently displaying 1 – 4 of 4

Page 1