The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Nous décrivons dans cet article les algorithmes nécessaires à une implantation efficace de la méthode de Schoof pour le calcul du nombre de points sur une courbe elliptique dans un corps fini. Nous tentons d’unifier pour cela les idées d’Atkin et d’Elkies. En particulier, nous décrivons le calcul d’équations pour , premier, ainsi que le calcul efficace de facteurs des polynômes de division d’une courbe elliptique.
For a smooth and proper curve over the fraction field of a discrete valuation ring , we explain (under very mild hypotheses) how to equip the de Rham cohomology with a canonical integral structure: i.e., an -lattice which is functorial in finite (generically étale) -morphisms of and which is preserved by the cup-product auto-duality on . Our construction of this lattice uses a certain class of normal proper models of and relative dualizing sheaves. We show that our lattice naturally...
Consider the families of curves and where A is a nonzero rational. Let and denote their respective Jacobian varieties. The torsion points of and are well known. We show that for any nonzero rational A the torsion subgroup of is a 2-group, and for A ≠ 4a⁴,-1728,-1259712 this subgroup is equal to (for a excluded values of A, with the possible exception of A = -1728, this group has a point of order 4). This is a variant of the corresponding results for (A ≠ 4) and . We also almost...
In this paper we describe how to perform computations with Witt vectors of length in an efficient way and give a formula that allows us to compute the third coordinate of the Greenberg transform of a polynomial directly. We apply these results to obtain information on the third coordinate of the -invariant of the canonical lifting as a function on the -invariant of the ordinary elliptic curve in characteristic .
We describe three algorithms to count the number of points on an elliptic curve over a finite field. The first one is very practical when the finite field is not too large ; it is based on Shanks's baby-step-giant-step strategy. The second algorithm is very efficient when the endomorphism ring of the curve is known. It exploits the natural lattice structure of this ring. The third algorithm is based on calculations with the torsion points of the elliptic curve [18]. This deterministic polynomial...
The tempered fundamental group of a -adic analytic space classifies covers that are dominated by a topological cover (for the Berkovich topology) of a finite étale cover of the space. Here we construct cospecialization homomorphisms between versions of the tempered fundamental groups of the fibers of a smooth family of curves with semistable reduction. To do so, we will translate our problem in terms of cospecialization morphisms of fundamental groups of the log fibers of the log reduction and...
Currently displaying 1 –
13 of
13