The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 34

Showing per page

Density of some sequences modulo 1

Artūras Dubickas (2012)

Colloquium Mathematicae

Recently, Cilleruelo, Kumchev, Luca, Rué and Shparlinski proved that for each integer a ≥ 2 the sequence of fractional parts a / n n = 1 is everywhere dense in the interval [0,1]. We prove a similar result for all Pisot numbers and Salem numbers α and show that for each c > 0 and each sufficiently large N, every subinterval of [0,1] of length c N - 0 . 475 contains at least one fractional part Q(αⁿ)/n, where Q is a nonconstant polynomial in ℤ[z] and n is an integer satisfying 1 ≤ n ≤ N.

Discrépance de la suite ( { n α } ) , α = ( 1 + 5 ) / 2

Yves Dupain (1979)

Annales de l'institut Fourier

Soit D * ( N ) la discrépance “à l’origine” de la suite n 1 + 5 2 . Nous montrons que lim sup D * ( N ) Log N = 3 20 Log 1 + 5 2 - 1 = 0 . 31 , quantité inférieure à celle correspondant à la suite de van der Corput. Les techniques utilisées sont celles liées au développement en fraction continue.

Currently displaying 1 – 20 of 34

Page 1 Next