The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 20 of 20

Showing per page

Répartition modulo 1 dans un corps de séries formelles sur un corps fini

Mireille Car (1995)

Acta Arithmetica

Introduction. Soit q une puissance d’un nombre premier p et soit q le corps fini à q éléments. Une certaine analogie entre l’arithmétique de l’anneau ℤ des entiers rationnels et celle de l’anneau q [ T ] a conduit à étendre à q [ T ] de nombreuses questions de l’arithmétique classique. L’équirépartition modulo 1 est une de ces questions. Le corps des nombres réels est alors remplacé par le corps q ( ( T - 1 ) ) des séries de Laurent formelles, complété du corps q ( T ) des fractions rationnelles pour la valuation à l’infini et...

Représentation des entiers naturels et suites uniformément équiréparties

Jean Coquet (1982)

Annales de l'institut Fourier

s ( n ) désigne la somme des chiffres de l’entier n en base q et σ α ( n ) la somme des chiffres de n associée au développement de α en fraction continue. Dans un article paru aux Annales de l’Institut Fourier (31 (1981), 1–15), Coquet, Rhin et Toffin montrent que, lorsque x ou y est irrationnel, la suite x s + y σ α est équirépartie modulo 1. On précise ici que l’équirépartition est uniforme.

Représentations des entiers naturels et indépendance statistique. II

Jean Coquet, Georges Rhin, Philippe Toffin (1981)

Annales de l'institut Fourier

s ( n ) désigne la somme des chiffres de l’entier n en base q et σ α ( n ) la somme des chiffres de n associée au développement en fraction continue de α . La suite ( x s ( n ) + y α α ( n ) ) n N est équirépartie modulo 1 si et seulement si x ou y est irrationnel.

Currently displaying 1 – 20 of 20

Page 1